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Protein ground state candidates in a simple model: An enumeration study
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The concept of the reduced set of contact maps is introduced. Using this concept we find the ground state
candidates for a hydrophobic-polar lattice model on a two-dimensional square lattice. Using these results we
exactly enumerate the native states of all proteins for a wide range of energy parameters. In this way, we show
that there are some sequences which have an absolute native state. Moreover, we study the scale dependence
of the number of members of the reduced set, the number of ground state candidates, and the number of
perfectly stable sequences by comparing the results for sequences with lengths of 6 up to 20.
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PACS number~s!: 87.14.Ee, 87.15.Cc, 87.15.Aa
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I. INTRODUCTION

The proteins are biomacromolecules, which are m
from thousands of atoms. These atoms are in interaction
each other and water molecules, which surround them. B
cally, to determine the states of a protein one needs to s
the problem with standard quantum mechanical calculatio
however, the complexity of these macromolecules rend
this impossible. A feasible approach to this problem is ba
on a coarse-grained view. In this viewpoint the proteins
made from 20 types of monomers~amino acids!. The most
important point in this approach is the determination of
effective interactions between the amino acids@1#. It seems
that the information about effective intermonomer intera
tion energy and the coding of the amino acids in the
quence is sufficient to determine the protein characterist

The structural information for protein structures can
coded in a contact map@2#. A contact map is a binaryL
3L matrix C. The elementci j of this matrix is nonzero ifi th
and j th monomers are in contact. The contact may be defi
in several ways. It is obvious that the information coded
contact maps is not sufficient for a complete characteriza
of the spatial configuration. The short-range nature of in
monomer interactions suggests that one can determine
configuration energy in terms of contacts. Thus if one kno
the effective intermonomer interactions in this coar
grained approximation, the contact maps have sufficient
formation to calculate the configuration energy. There
many papers which study the thermodynamical and st
tural properties of proteins by using contact maps@3#.

It is well known that the biological functionality of pro
teins depends on the shape of their native states. The n
structure is the unique minimum free energy structure for
protein sequence@4#. As any protein in nature must have
well-defined function, the uniqueness of native states i
biological necessity for these molecules of life. Thus sear
ing the configuration space to find native states by using
Monte Carlo methods@5# or exact enumerations@6–8# has
been the subject of many papers. In most previous works
problem was studied for given values of intermonomer
ergy parameters. As our knowledge about the effective in
actions is not certain, and the native structures of prote
PRE 601063-651X/99/60~4!/4629~8!/$15.00
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may be sensitive to these parameters@9#, looking at the na-
tive states for different energy parameters is relevant@8,10#.
By using a simple hydrophobic-polar~HP! lattice model we
have shown in a recent work@11# that the number of ground
state candidates for any sequence is unexpectedly small.
suggests that the problem can be studied for a wide rang
interaction parameters by exact enumeration. We study
problem on a two-dimensional square lattice. In this a
proach a protein structure is modeled by a self-avoiding w
on the lattice, and any pair of monomers which are nea
neighbors and are not adjacent according to sequence~non-
sequential neighbor! are in contact.

The number of possible configurations for anL-mer is
equal to the number of self-avoiding walks (NSAW) with L
21 steps. We have

NSAW;Lg21zeff
L , ~1!

in which g is a dimension-dependent constant, andzeff is the
effective coordination number. For a two-dimensional squ
lattice,g5 43

32 andzeff52.64@12#. Since many of these walk
give the same contact matrix, the number of possible con
matrices~physical maps! Nc is much smaller, although it is
still very large. In a recent work@13# the number of physica
maps was fit to a formula similar to Eq.~1! and a value of
zc52.29 was obtained.

If one is interested only in the native structure of protein
the set of the contact maps can be reduced further by rem
ing all maps which have no chance to be a native state.
call the remaining maps thereduced set of contact maps.
Indeed, this reduction is due to the physical fact that
effective interactions between amino acids are negative@1#.
This reduced set of contact maps can be used in enumer
studies to find the possible ground states and the native s
of proteins. In this paper we use a simple HP lattice mode
address the problem for proteins with various lengths
more detail. We obtain some ground state candidates
possess some known properties common to real prote
Also a stability against the variation of interaction para
eters is shown. Some evidence for this stability has b
reported in some other works@14#.
4629 © 1999 The American Physical Society
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II. REDUCED CONTACT MAPS

The effective potential energies between the 20 types
amino acids can be described by a 20320 interaction matrix
@1#. The energy of a given sequences in any structure can
be determined from

E5(
i , j

ci j ms is j
. ~2!

Theci j andmi j are, respectively, the elements of the cont
matrix ~C! and the interaction matrix (M ). This shows that
all configurations which have the same contact map h
equal energies. If we look at the energy spectrum of o
sequence, the states corresponding to such maps are d
erate. We call such degeneracies, type-1 degeneracies to
tinguish them from other kinds of degeneracies, which
shall encounter later@11#. If the energy of a sequence
minimum in such states, this sequence does not hav
unique native state. Such sequences are not proteinlike.
states corresponding to suchdegenerate contact mapscan
never be a native state, however, we cannot exclude t
from our search, because they compete with other maps
the other hand, there are some maps which cannot be
ground state and do not have a role in the competition for
ground state. To see that, consider two contact matricesC1
and C2 and their subtraction (C85C12C2). We call C2 a
componentof C1 if all elements ofC8 are non-negative
(ci j8 50 or 1). Note thatC8 has at least one nonzero eleme
Using Eq.~2!, the energy of an arbitrary sequences in the
configuration~s! corresponding to the mapC1 can be written
as

E15(
i , j

c1,i j ms is j

5(
i , j

c2,i j ms is j
1(

i , j
ci j8 ms is j

5E21(
i , j

ci j8 ms is j
. ~3!

According to experimental data all elements of interact
matrix M are negative@1#. Thus the second term in the righ
hand side gives a negative contribution to energy, andE1
,E2 for any sequence. Then mapC2 can never be a groun
state. One can find all component maps such asC2, and
remove them from the set of contact maps. Indeed such c
ponent maps are related to configurations which can fold
more compact shapes without losing any of their old c
tacts. By this procedure, a reduced collection of maps
found. We call this collection thereduced set of contac
maps, and we represent the number of its elements byNr .
We have enumeratedNr for sequences with lengths up to 2
The results are shown in Fig. 1. In this figure the number
reduced maps (Nr) are compared with the number of se
avoiding walks (NSAW) and the number of physical map
(Nc), on a two-dimensional square lattice. Although all
these quantities have similar behaviors, the growth rate oNr
is much slower than the others. If we fit the data to Eq.~1!
we obtain g r51.37 and zr52.01. These results are no
of

t

e
e
en-

dis-
e

a
he

m
n

he
e

.

n

m-
to
-
is

f

enough to see whether the value ofg r is lattice dependent. In
the case of self-avoiding walks it is lattice independent@12#.
In Fig. 1 there are other points which show the number
native states. We will discuss this matter in Sec. IV.

Let us consider the number of contacts (b5 1
2 ( i , j ci , j ) as a

measure for the compactness of configurations. Indeed, a
ter parameter is the relative compactnessG,

G5
b

bmax
, ~4!

wherebmax is the maximum number of possible contacts f
sequences of the same length. The maximum of cont
bmax, for sequences of length 6, 8, 10, 12, 14, 16, 18, and
are 2, 3, 4, 6, 7, 9, 10, and 12, respectively. In Fig. 2,
number of members of the reduced set of contact maps vs
number of contacts is compared with the correspond
number of SAWs and physical maps for proteins of leng
18. We see that the reduced set of contact maps cont
only highly compact configurations. This shows why the
sults of studies on compact structure spaces are reason
In Fig. 3, the average compactness for SAWs, physical m
and reduced maps is compared for sequences of var

FIG. 1. The number of self-avoiding walk structures, physic
contact maps, reduced set of contact maps, and native structure
the number of monomers in sequences.

FIG. 2. Distribution of the number of structures vs the numb
of contacts for sequences of length 18.
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PRE 60 4631PROTEIN GROUND STATE CANDIDATES IN A SIMPLE . . .
lengths. As one can see,^GSAW&,^Gc&,^G r&. There is an
oscillatory behavior in the graphs. Note that thebmax is an
integer. The highest ratio ofbmax to length ~L! is for se-
quences can be fitted to a square structure. Thus, seque
with such lengths have lower average compactness. Th
due to the finite size effect and also the fact that the num
of contacts has to be an integer; the same behavior ca
observed in our other results in this paper too.

If one scales the number of reduced maps (Nr) by the
number of total structures (NSAW) at each compactness,
scale-independent behavior can be seen~Fig. 4!. It also
seems that there is a critical compactness, below which
compactness of the members of the reduced set never d
We do not have an exact analytical proof, but it seems fr
these data that a transition occurs in the number of redu
maps near the compactness of 0.8 and it vanishes for a c
pactness below 0.5.

Contact maps can correspond to more than one struc
We call such mapsdegenerate maps. These maps canno
correspond to the native state of any sequence. Within the
of reduced maps there are fewer of such degenerate m
than within the set of physical maps. Figure 5 compares
percentage of nondegenerate maps for reduced and phy
maps. It seems that both of them approach asymptotic
ues.

FIG. 3. The average compactness of structures for SAW, ph
cal maps, reduced maps, and native structures, vs the numb
monomers in sequences.

FIG. 4. The number of reduced maps that scaled by the num
of all structures at each compactness, for sequences with le
8–20. There is a transition near 0.8 and a cutoff near 0.5. The l
can be seen better in logarithmic scale~inner graph!.
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III. GROUND STATE CANDIDATES
FOR THE HP MODEL

The native states of proteins are to be found among
structures corresponding to the reduced set of contact m
The sequence of the amino acids along the protein chain
their interactions have an essential role in the selection
particular structure as the native state. In the coarse-gra
viewpoint, the interaction between the amino acids is ch
acterized by the effective energies. These effective inte
tions depend on the properties of the solutions. A relev
question is how sensitive the native structures are to chan
in these interactions. We address this question by enume
ing the possible ground states of protein sequences fo
wide range of effective intermonomer interaction energie

Without any loss of generality, we use a hydrophob
polar two-dimensional lattice model@15# in this paper. The
general form of the interactions betweenH andP monomers
in a HP model can be written as follows@8,16#:

EHH5222g2Ec ,

EHP5212Ec , ~5!

EPP52Ec ,

where Ess8 is the contact energy between monomers
typess and s8. These potential energies are only betwe
nonsequential nearest neighbors. Hereg andEc are the mix-
ing and compactness potentials, respectively, two parame
which are determined from experimental data. There
many publications based on this model, and in most of th
the values ofg andEc are fixed@16,15#. Here, we consider
them as two free parameters and discuss our results in te
of them.

It has been argued that the following relations should h
between intermonomer energies:

EHH,EHP,EPP ,
~6!

EHH1EPP,2EHP .
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FIG. 5. The percentage of nondegenerate maps for reduced
physical maps.
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These arguments are based on the compactness of the n
states@17# and some calculations on 20320 intermonomer
interaction matrixM @18#. These restrictg andEc to positive
values (g,Ec.0).

At first sight, it might seem possible to arrive at any n
tive state for a given sequence by changingg and Ec . But
when we consider the geometrical properties of the gro
state, we will find that these parameters are not powe
enough to select any configuration as the native state
other words, the native states are stable against the chan
interaction parameters.

If we considerH521 for hydrophobic monomers an
P50 for polar monomers, a given sequence can then
represented by a binary vector (s) @8#. The energy of this
sequence in a configuration characterized by a contact m
C can be written as

E52m2ag2bEc , ~7!

wherem, a, andb are three integers, related tos andC as
follows:

m52s t
•C•1,

a5
1

2
s t

•C•s, ~8!

b5
1

2
1t
•C•1.

It can be seen thatm is equal to the number of all nonse
quential neighbors ofH monomers in the configuration,a is
the number ofH2H contacts, andb is the number of all
contacts. It can be shown that the following inequalities h
between these parameters@19#.

m2b<a<
m

2
<b. ~9!

Equation~7! suggests that the energy levels of a given
quence can be described by three integer numbers (m,a,b).
It is highly probable that these states are degenerate. T
are three types of degeneracy.

Type 1: C5C8. In this case two or more configuration
with different shapes have the same contact matrix. Th
configurations will remain degenerate for any sequence,
any choice ofg andEc . These are the configurations corr
sponding to the degenerate maps already mentioned in
II. This type of degeneracy is more probable for configu
tions with low compactness~see Fig. 2!. Note that we are no
talking about the configurations which are related to e
other by spatial symmetries, i.e., rotation, reflection, etc.,
our purpose such configurations are identical.

Type 2: (m,a,b)5(m8,a8,b8) but CÞC8. In this case
one particular sequence has the samem, a, andb values in
two or more configurations. This degeneracy persists for
value ofg andEc , but may disappear for another sequen
Although this degeneracy depends on sequence coding
b5b8 condition is purely geometrical, and is a necess
condition for this degeneracy.

Type 3:E5E8, but (m,a,b)Þ(m8,a8,b8). One sequence
has the same energy in two different states (m,a,b) and
(m8,a8,b8), provided thatg and Ec obey the following re-
lation:
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~m2m8!1~a2a8!g1~b2b8!Ec50. ~10!

This degeneracy is related to both sequence codings and
intermonomer interactions.

The first type of these degeneracies is completely geom
ric. The second one depends on both geometry and the am
acids’ coding sequence. These two types do not depen
the values of the interaction energies. Thus, in the ene
spectrum of any sequence there are some states which
degenerate independently from the potential. If the grou
state of a particular sequence is one of these degene
states, that sequence does not have a unique native stru

The third type is not actually a degeneracy at all. Equat
~10! corresponds to a line in the parameter space ofEc and
g. This line is a level crossing line. Degeneracy actua
occurs only on the line, and a highly accurate fine-tuning
needed to reach a point on this line. For the two sets
interaction energy parameters on the two sides of this l
the energy ordering of the states is different. For any pai
states such an ordering line exists. By drawing all order
lines in the space ofEc and g, this space is divided into
many ordering zones. We are only interested in the gro
state, which means that many of these ordering lines are
relevant. Some of them only govern the ordering of the
cited states. By removing the irrelevant lines, one gets a
gram which shows the ground state cells~Fig. 6!. As men-
tioned before, changing the intermonomer interact
parameters inside any of these cells does not change
ground state. In some recent works@20# this picture is intro-
duced to show the stability of native states against chang
the interaction parameters@21#. They only looked at one of
these cells in the neighborhood of some selected interac
values. But by looking at the whole energy space, one
find all possible ground states and their corresponding ce
Any such cell in the space of energy parameters is associ

FIG. 6. The space of energy parameters~arbitrary units! for
sequenceHPPPHPHPHPPHPHPHPHHPis divided into six
cells. The integer numbers (m,a,b), inside any cell indicate the
ground state corresponding to the cells. Three of these state
degenerate. The types of degeneracies for degenerate state
shape of structures for nondegenerate states are indicated in
cells.
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with one ground state candidate. The number of cells is eq
to the number of ground state candidates@Gc(s)#. By draw-
ing such diagrams, one can easily find the ground state
any choice ofEc and g. Figure 6 shows this diagram for
20-mer. In this example there are only seven possible gro
states. The cells marked with the numbers ‘‘1’’ and ‘‘2
correspond to type-1 and type-2 degenerate states, res
tively, therefore there is no unique native structure for th
cells. The sequence in this example has three nondegen
states. These structures are shown in the figure. It is pos
that all the ground state candidates of a given sequence
degenerate. These sequences constitute universally ba
quences, i.e., for any set of interaction parameter values
do not have a native structure. Any sequence which is n
bad sequence we call agood sequence. Nearly 54% of the
sequences of length 20 are good sequences, i.e., for s
specific set of energy parameters they have a native sta

The interesting point in Fig. 6 is that the number
ground state candidates is very small. The largest value
Gc , for sequences with length 6,8,10,12,14,16,18,20
1,1,1,3,4,5,6,7 respectively. Figure 7 shows the histogram
Gc(s) for all sequences withL520. The light gray area in
this figure shows the result for all 220 sequences, and th
dark area shows the results for good ones. From this diag
it can be seen that the mean value ofGc(s) is very small.
The average ofGc(s) for various lengths is shown in Fig. 8
However, the data in hand are not enough to draw a relia
conclusion about the number of ground state candidates
sequences of large length, but the average number doe
seem to grow very rapidly, and the growth rate appears to
linear. Extrapolating the growth rate to sequences of len
200, 30 ground state candidates are predicted on ave
Comparison of the average value ofGc(s) for these se-
quences with the number of all configurations~i.e., for se-
quences with length 20 the number of sequences is on
order of 108) shows that the geometric constraints play
important role in selecting a state as the ground state.
reason that there are few ground state candidates for
sequence can be given by a geometrical argument@11#. This
argument shows that the upper estimate for maximumGc is
L2.

As Fig. 8 shows, there are some good sequences

FIG. 7. The histogram of the number of ground state candid
for 20-mers. The light and dark gray areas show the results fo
sequences and good sequences, respectively. There are some
sequences’’ with only one ground state candidate.
al
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Gc51. This means that for any set of energy parameter v
ues, they have the same unique ground state. Figure 9 sh
some of these sequences and their unique native struct
Indeed the native states of these sequences have perfec
bility with respect to a change of the energy parameters.
enumeration shows that theseabsolute native structuresare
to be found among the most compact structures. As Fig
shows, although the ratio of the number ofperfectly stable
sequencesto the number of all possible proteins decreas
with increasingL, their actual number increases. This su
gests that for the proteins with typical lengths near that
natural proteins, perfectly stable sequences constitute a s
but nonzero fraction of all possible sequences. A relev
question is whether the existence of these perfectly sta
sequences is due to the simplifications in our model. Ac
ally we cannot give an exact answer to this question,
such sequences may exist in models with more mono
types.

The existence of these sequences may answer some
tions about protein folding. Their number is small compar
with the huge number of the possible amino-acid sequen
their native states are highly compact and are stable aga
the changes in the intermonomer interactions~i.e., the prop-
erties of the solution!.

s
ll
ood

FIG. 8. The average of the number of ground state candid
for all sequences and good sequences vs length of sequences

FIG. 9. Four examples of perfectly stable sequences and t
absolute native structures. For any positive value ofg andEc these
sequences are folded uniquely in the structures shown.



p
se

tiv
iv
e
e
e

-
he
an

th
ta

h
te

rg
t
m

n
ur
tr

n
an
in
t

c
e
th
y

cu
de

t

his
of

nd
enu-
era-
m-
dates
tes
nd
s of
,

nd
s in
cify
of
ese

The
how
any
re re-

ce
ab

en

en

4634 PRE 60V. SHAHREZAEI, N. HAMEDANI, AND M. R. EJTEHADI
IV. NATIVE STRUCTURES

In Sec. II we introduced the reduced set of contact ma
As was shown, the number of maps belonging to this
Nr , is much smaller than the number of structures,NSAW.
But the number of those structures which can be the na
state is still much smaller. The number of possible nat
structures,Nnative, is shown in Fig. 1. In this figure all thos
structures which have been the native state of some sequ
for at least one set of energy parameter values have b
counted. Fitting the data on an equation similar to Eq.~1!,
givesgnative51.87 andznative51.68. In Fig. 2, we have com
pared the number of native structures as a function of t
compactness with the total number of physical maps
with the number of maps in the reduced set forL518. It can
be seen that there are no native structures with fewer
eight contacts. Also the average compactness of native s
is compared in Fig. 3.

We can also look at the designability of structures. T
designability shows how many times a structure is selec
as the native state for a fixed set of interaction parameter@7#.
We observed that the distribution of designability is ene
dependent, but the most highly designable structures for
different values of energy parameters are almost the sa
We can introduce a global designability parameterD for the
native structures. It is a bit different from the above desig
ability definition. In our case we correspond to any struct
a set of sequences. Any of these sequences select this s
ture as the unique ground state, at least in a small regio
energy parameter space. The global designability of
structure is the number of the members of its correspond
set, i.e., we count how many times a structure becomes
candidate for a nondegenerate ground state.

Figure 11 shows the histogram of designability for stru
tures with length 20. As one can see, the results are v
similar to those for a fixed set of energy parameters in
space of compact structures@8,7#. The average designabilit
as a function of compactness forL520 is shown in Fig. 12.
As the diagram shows, the peak average designability oc
for the most compact structures and it falls sharply with
creasing compactness. Thus if one is only interested
highly designable structures, it is reasonable to search
space of compact structures.

FIG. 10. The ratio of the numbers of perfectly stable sequen
to all sequences decreases with length of sequences, but their
lute numbers increase~inner graph!.
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V. SPACE OF ENERGY PARAMETERS, Ec AND g

One of the important aspects of the work done in t
paper is that we can find the exact results for any range
energy parameters. The time it takes for this program to fi
the ground state candidates for all sequences by exact
meration is on the same order as that of the usual enum
tion schemes for only one particular set of energy para
eters. Because the average number of ground state candi
is very small, the determination of the native ground sta
for any range of interest only takes a little time. We fou
the native states of all sequences of length 20, for all pair
energy parameters within a 12312 square in arbitrary units
with a grid size of 0.1~14 400 points!. The number of pro-
teinlike sequences~sequences which have unique grou
states! is shown in Fig. 13. As one can see, there are jump
the number of proteinlike sequences. These jumps spe
the borders of regions of relative stability within the space
energy parameters. A closer examination shows that th
borderlines contain sharp dips adjacent to the jumps.
large changes in the number of proteinlike sequences s
that when we cross these borders the ground states of m
sequences change, and the degenerate ground states a
placed by nondegenerate ones~or vice versa!. However,

s
so-

FIG. 11. The histogram of number of structures with a giv
designability.

FIG. 12. The average designability for structures with a giv
number of contacts, forL520.
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nothing can be said about the details of these changes. O
can get some idea about what is happening on these bord
lines by comparing the contour plot for Fig. 13~a! @Fig.
13~b!# with the ordering lines diagram for one particular se
quence~Fig. 6!. As mentioned in Sec. III, the ordering lines
specify level crossings and type-3 degeneracies only occ
on the ordering line itself. These ordering lines constitute th
underlying cause of the sharp dips observed in the borde
This is more evident in Fig. 14. In this figure we have show
those points in the energy parameter space where at least
type-3 degeneracy occurs. This diagram is in fact a superp
sition of diagrams like Fig. 6, for all sequences, and any lin
in it corresponds to many ordering lines between groun
state candidate cells.

We can find similar information for other types of degen
eracies. For example, the number of sequences which ha
type-1 degenerate ground states is shown in Fig. 15. As o
can see in this diagram, the number of such sequences v
ishes for largeEc and smallg. For largeEc the number of
contactsb plays an essential role in the selection of the

FIG. 13. The number of proteinlike sequences of length 20, fo
given values of energy parameters in a 12312 square region~arbi-
trary units!; ~a! three-dimensional plot,~b! contour plot.
ne
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ur
e
rs.

one
o-
e
d
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ne
an-

ground state@Eq. ~7!#. Type-1 degeneracies do not occur f
highly compact sequences~see Fig. 2!. Thus this type of
degeneracy is more relevant in the regionEc,g. We have
not shown the corresponding information for type-2 deg
eracies as they contain no new information; similar bor
jumps can be observed in the number of sequences with
type of degeneracy too. The maximum percentage of
quences with nondegenerate, type-1 degenerate, and ty
degenerate ground states in the chosen region are 40
5.06%, and 64.9%, respectively.

In addition to obtaining information about the sequenc
this procedure also finds the ground states. Since the en
parameters determine which states are the ground states
number of structures which can be the native state of so
particular sequence also depends on the energy parame
Figure 16 shows the number of native states as a functio
the energy parameters. The importance of compactness
large values ofEc can also be seen in this diagram. Note th
the smallest value for the number of native states is 503. T
number corresponds to the number of most compact st

r

FIG. 14. The points in the energy parameter space~arbitrary
units!, where type-3 degeneracies occur, for sequences of length
The grid size is 0.1.

FIG. 15. The number of sequences of length 20, with typ
degenerate ground states, for given values of energy parameter
12312 square region~arbitrary units!.
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tures of length 20. Again, large jumps in the number of n
tive states are observed. One can also find the average
ignability of the structures by dividing the data of Figs. 1
and 16~the ratio of the number of sequences to a correspo
ing number of native structures!.

VI. CONCLUSION

Due to the short-range nature of intermonomer inter
tions, the configuration energy of protein sequences can
determined by using configuration contact matrices. In t
paper, it has been shown that for this class of proble
where one is interested in native states of proteins, the s
of physical contact maps can be reduced to a much sm

FIG. 16. The number of native states for sequences of length
for given values of energy parameters in a 12312 square region
~arbitrary units!.
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set by removing all irrelevant maps. We have found the
duced set of contact maps for sequences of lengths up t
in this paper by exact enumeration. This reduced set of c
tact maps shows a scale-independent behavior as show
Fig. 4.

Using the reduced set of contact maps, the ground s
candidates for all sequences were found in the HP mo
The number of these ground state candidates is quite sm
However, we limited ourselves to the HP model in this wo
but some arguments@11,19# show that the number of groun
state candidates is restricted in models with more mono
types. The ground state candidates divide the space of en
parameters into several cells. By finding this cell structu
for all sequences, we have found the native states for
sequences of different lengths, for a wide range of ene
parameters. Jumps are observed in the number of protein
sequences. These jumps are related to boundaries o
aforementioned cells.

Another interesting result is that we find some sequen
with absolute native states, i.e., their native states are
sensitive to the values of energy parameters. Our res
show that the number of such perfectly stable sequen
grows with length, however, their percentage decreases.

Because the key tool used in this paper has been the s
tural information contained in the contact maps, the qual
tive results can be generalized to all contact models, reg
less of the details of the lattice, the contact rules, and
number of monomer types.
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