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Protein ground state candidates in a simple model: An enumeration study
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The concept of the reduced set of contact maps is introduced. Using this concept we find the ground state
candidates for a hydrophobic-polar lattice model on a two-dimensional square lattice. Using these results we
exactly enumerate the native states of all proteins for a wide range of energy parameters. In this way, we show
that there are some sequences which have an absolute native state. Moreover, we study the scale dependence
of the number of members of the reduced set, the number of ground state candidates, and the number of
perfectly stable sequences by comparing the results for sequences with lengths of 6 up to 20.
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PACS numbd(s): 87.14.Ee, 87.15.Cc, 87.15.Aa

I. INTRODUCTION may be sensitive to these paramet@ looking at the na-
tive states for different energy parameters is releyariQ.

The proteins are biomacromolecules, which are mad®&y using a simple hydrophobic-pol&P) lattice model we
from thousands of atoms. These atoms are in interaction witAave shown in a recent wof 1] that the number of ground
each other and water molecules, which surround them. Bas$tate candidates for any sequence is unexpectedly small. This
cally, to determine the states of a protein one needs to solv@uggests that the problem can be studied for a wide range of
the problem with standard quantum mechanical calculationdnteraction parameters by exact enumeration. We study this
however, the complexity of these macromolecules renderBroblem on a two-dimensional square lattice. In this ap-
this impossible. A feasible approach to this problem is base@roach a protein structure is modeled by a self-avoiding walk
on a coarse-grained view. In this viewpoint the proteins arén the lattice, and any pair of monomers which are nearest
made from 20 types of monome¢amino acids The most neighbors and are not adjacent according to sequérare
important point in this approach is the determination of thesequential neighbomre in contact.
effective interactions between the amino aditls It seems The number of possible configurations for armer is
that the information about effective intermonomer interac-equal to the number of self-avoiding walkild,y) with L
tion energy and the coding of the amino acids in the se—1 steps. We have
guence is sufficient to determine the protein characteristics.

The structural information for protein structures can be o v-1,L

. . : Nsaw~L7" "Zg, (1)
coded in a contact maf2]. A contact map is a binary
X L matrix C. The element;; of this matrix is nonzero ifth
andjth monomers are in contact. The contact may be defineth which vy is a dimension-dependent constant, agglis the
in several ways. It is obvious that the information coded ineffective coordination number. For a two-dimensional square
contact maps is not sufficient for a complete characterizatiofattice, y= 33 andz.s=2.64[12]. Since many of these walks
of the spatial configuration. The short-range nature of intergive the same contact matrix, the number of possible contact
monomer interactions suggests that one can determine theatrices(physical mapsN, is much smaller, although it is
configuration energy in terms of contacts. Thus if one knowsstill very large. In a recent workl3] the number of physical
the effective intermonomer interactions in this coarse-maps was fit to a formula similar to E¢l) and a value of
grained approximation, the contact maps have sufficient inz,=2.29 was obtained.
formation to calculate the configuration energy. There are If one is interested only in the native structure of proteins,
many papers which study the thermodynamical and structhe set of the contact maps can be reduced further by remov-
tural properties of proteins by using contact mapk ing all maps which have no chance to be a native state. We

It is well known that the biological functionality of pro- call the remaining maps theeduced set of contact maps
teins depends on the shape of their native states. The nativiedeed, this reduction is due to the physical fact that all
structure is the unique minimum free energy structure for thesffective interactions between amino acids are negédfiye
protein sequencpt]. As any protein in nature must have a This reduced set of contact maps can be used in enumeration
well-defined function, the uniqueness of native states is atudies to find the possible ground states and the native states
biological necessity for these molecules of life. Thus searchef proteins. In this paper we use a simple HP lattice model to
ing the configuration space to find native states by using thaddress the problem for proteins with various lengths in
Monte Carlo method$5] or exact enumeration®—8] has  more detail. We obtain some ground state candidates that
been the subject of many papers. In most previous works, thgossess some known properties common to real proteins.
problem was studied for given values of intermonomer en-Also a stability against the variation of interaction param-
ergy parameters. As our knowledge about the effective intereters is shown. Some evidence for this stability has been
actions is not certain, and the native structures of proteinseported in some other workg4].
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II. REDUCED CONTACT MAPS 10°
The effective potential energies between the 20 types of 17 |~ /
amino acids can be described by 22D interaction matrix ::Zm“:‘::‘; /
[1]. The energy of a given sequeneoein any structure can i o

be determined from @
) /.%

10°

E=2 CiiMyo 2)

0 !

Number of Structures

Thec;; andm;; are, respectively, the elements of the contact 5
matrix (C) and the interaction matrixM). This shows that %
all configurations which have the same contact map have 1
equal energies. If we look at the energy spectrum of one
sequence, the states corresponding to such maps are dege 4 6 s 10 12 14 16 18 20 2
erate. We call such degeneracies, type-1 degeneracies to dis-
tinguish them from other kinds of degeneracies, which we F|G. 1. The number of self-avoiding walk structures, physical
shall encounter latef11]. If the energy of a sequence is contact maps, reduced set of contact maps, and native structures, vs
minimum in such states, this sequence does not have te number of monomers in sequences.
unique native state. Such sequences are not proteinlike. The
states corresponding to sudegenerate contact magsn  enough to see whether the valuejgfis lattice dependent. In
never be a native state, however, we cannot exclude theme case of self-avoiding walks it is lattice independdra.
from our search, because they compete with other maps. Qn Fig. 1 there are other points which show the number of
the other hand, there are some maps which cannot be theative states. We will discuss this matter in Sec. IV.
ground state and do not have a role in the competition for the Let us consider the number of Contadt&-(%Ei,jci,j) as a
ground state. To see that, consider two contact matlzes measure for the compactness of configurations. Indeed, a bet-
and C, and their subtractionG’'=C;—C,). We callC, a  ter parameter is the relative compactnEss
componentof C; if all elements of C' are non-negative
(ci’j =0 or 1). Note thaCC’ has at least one nonzero element. b
Using Eqg.(2), the energy of an arbitrary sequeneaen the =5, S
configuratioris) corresponding to the map, can be written
as whereb ., is the maximum number of possible contacts for
sequences of the same length. The maximum of contacts
bmax, for sequences of length 6, 8, 10, 12, 14, 16, 18, and 20
are 2, 3, 4,6, 7,9, 10, and 12, respectively. In Fig. 2, the
number of members of the reduced set of contact maps vs the
number of contacts is compared with the corresponding
number of SAWs and physical maps for proteins of length
18. We see that the reduced set of contact maps contains
_ / only highly compact configurations. This shows why the re-
=E,+ 2, Clj My, ® \
] ults of studies on compact structure spaces are reasonable.
In Fig. 3, the average compactness for SAWSs, physical maps,
According to experimental data all elements of interactionand reduced maps is compared for sequences of various
matrix M are negativg¢l]. Thus the second term in the right-
hand side gives a negative contribution to energy, Bad v’ e
<E, for any sequence. Then m&p can never be a ground o o - ® Physical maps
state. One can find all component maps suchCas and o Bog X Reduced maps
remove them from the set of contact maps. Indeed such com o L
ponent maps are related to configurations which can fold to, . .
more compact shapes without losing any of their old con-§
tacts. By this procedure, a reduced collection of maps isé
found. We call this collection theeduced set of contact 2 .
maps and we represent the number of its elementdNby
We have enumerated, for sequences with lengths up to 20. ™
The results are shown in Fig. 1. In this figure the number of x
reduced mapsN;,) are compared with the number of self-
avoiding walks Nsaw) and the number of physical maps

E1: IZJ Cl,ij mlTiO'j

J— !
- IEJ C2,ij maia'j + IZJ Cij ma'ia'j

XulO

(N¢), on a two-dimensional square lattice. Although all of i 2 ‘ 6 e 1
these quantities have similar behaviors, the growth raié, of lumber ofconacts
is much slower than the others. If we fit the data to Eg. FIG. 2. Distribution of the number of structures vs the number

we obtain y,=1.37 andz,=2.01. These results are not of contacts for sequences of length 18.
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FIG. 3. The average compactness of structures for SAW, physi- % . . o - M o o 2 M
cal maps, reduced maps, and native structures, vs the number ¢ L
monomers in sequences.

FIG. 5. The percentage of nondegenerate maps for reduced and

lengths. As one can seél'gaw) <(I'.)<(I',). There is an Physical maps.
oscillatory behavior in the graphs. Note that thg,, is an
integer. The highest ratio db, ., to length (L) is for se- ll. GROUND STATE CANDIDATES
guences can be fitted to a square structure. Thus, sequences FOR THE HP MODEL
with such lengths have lower average compactness. This is
due to the finite size effect and also the fact that the numbegtr
of contacts has to be an integer; the same behavior can bﬁ,]
observed in our other results in this paper too.

If one scales the number of reduced maps)(by the

The native states of proteins are to be found among the
uctures corresponding to the reduced set of contact maps.
e sequence of the amino acids along the protein chain and
their interactions have an essential role in the selection of a
particular structure as the native state. In the coarse-grained
number of total structuresNsaw) at each compactness, a viewpoint, the interaction between the amino acids is char-

scale-mdependent_ beha_v_|or can be s¢biy. 4. It aIsp acterized by the effective energies. These effective interac-
seems that there is a critical compactness, below which thﬁ

¢ fh b  the reduced set q ons depend on the properties of the solutions. A relevant
compactness ot the members of the reduced Set never rOQﬁuestion is how sensitive the native structures are to changes
We do not have an exact analytical proof, but it seems fro

o . Mh these interactions. We address this question by enumerat-
these data that a transition occurs in the number of reducelagl the possible ground states of protein sequences for a

maps near the compactness of 0.8 and it vanishes for a COMjide range of effective intermonomer interaction energies.
pactness below 0.5.

Without any loss of generality, we use a hydrophobic-
Eolar two-dimensional lattice modgl5] in this paper. The
eneral form of the interactions betweldrandP monomers
a HP model can be written as followW8,16]:

We call such mapsglegenerate mapsThese maps cannot
correspond to the native state of any sequence. Within the s
of reduced maps there are fewer of such degenerate maps
than within the set of physical maps. Figure 5 compares the

percentage of nondegenerate maps for reduced and physical Ban=—2-7-E.,
maps. It seems that both of them approach asymptotic val-
ues. Epp=—-1—-E,, (5)
1 il Epp=—E,
14 10" »
102 §" a® o
o 00 o X where E . is the contact energy between monomers of
- ° o typeso and o'. These potential energies are only between
2 | e : x nonsequential nearest neighbors. HgrandE, are the mix-
A Ta oL=20 ™ ing and compactness potentials, respectively, two parameters
= . e which are determined from experimental data. There are
o4 a6 |- many publications based on this model, and in most of them
° o the values ofy andE, are fixed[16,15. Here, we consider
02 oo | them as two free parameters and discuss our results in terms
s of them.
o FOTVIER 3 S It has been argued that the following relations should hold

0 0.2 0.4 0.8 08 1

Compacincss between intermonomer energies:

FIG. 4. The number of reduced maps that scaled by the number
of all structures at each compactness, for sequences with length
8-20. There is a transition near 0.8 and a cutoff near 0.5. The latter Q)
can be seen better in logarithmic scélener graph. EnntEpp<2Eup.

Enn<Enp<Epp,
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These arguments are based on the compactness of the nati **
states[17] and some calculations on @20 intermonomer
interaction matrixM [18]. These restricy andE, to positive s
values (y,E.>0).

At first sight, it might seem possible to arrive at any na-
tive state for a given sequence by changiyngndE;. But
when we consider the geometrical properties of the grounc
state, we will find that these parameters are not powerful
enough to select any configuration as the native state. Irw
other words, the native states are stable against the change
interaction parameters.

If we considerH=—1 for hydrophobic monomers and .
P=0 for polar monomers, a given sequence can then be
represented by a binary vectoo) [8]. The energy of this
sequence in a configuration characterized by a contact matri:
C can be written as

25 (14,6 ,11)

(14,7, 10)
2

15

15,5, 11

(18,7, 9)

35

o
e |
2

E:_m_a’)/—bEC, (7) X 15 y 2 25 3
FIG. 6. The space of energy parametéasbitrary unitg for
sequenccHPPPHPHPHPPHPHPHPHHPIs divided into six
m=-¢!C-1, cells. The integer numberan(a,b), inside any cell indicate the
1 ground state corresponding to the cells. Three of these states are

wherem, a, andb are three integers, related toandC as
follows:

a= Ea-t~C- g, (8) degenerate. The types of degeneracies for degenerate states and
1 shape of structures for nondegenerate states are indicated in the
b:_ltCl cells.
5 .

(10)

It can be seen thah is equal to the number of all nonse-
guential neighbors off monomers in the configuratios, is
the number ofH —H contacts, and is the number of all

(m—m')+(a—a’")y+(b—b")E.=0.

This degeneracy is related to both sequence codirand
intermonomer interactions.

contacts. It can be shown that the following inequalities hold  The first type of these degeneracies is completely geomet-
between these paramet¢is]. ric. The second one depends on both geometry and the amino
acids’ coding sequence. These two types do not depend on
the values of the interaction energies. Thus, in the energy
spectrum of any sequence there are some states which are
degenerate independently from the potential. If the ground
Equation(7) suggests that the energy levels of a given sestate of a particular sequence is one of these degenerate
guence can be described by three integer numbrara,p). states, that sequence does not have a unique native structure.
It is highly probable that these states are degenerate. There The third type is not actually a degeneracy at all. Equation
are three types of degeneracy. (10) corresponds to a line in the parameter spac& oénd

Type 1:C=C’. In this case two or more configurations y. This line is a level crossing line. Degeneracy actually
with different shapes have the same contact matrix. Theseccurs only on the line, and a highly accurate fine-tuning is
configurations will remain degenerate for any sequence, andeeded to reach a point on this line. For the two sets of
any choice ofy andE.. These are the configurations corre- interaction energy parameters on the two sides of this line,
sponding to the degenerate maps already mentioned in Sethie energy ordering of the states is different. For any pair of
Il. This type of degeneracy is more probable for configura-states such an ordering line exists. By drawing all ordering
tions with low compactnessee Fig. 2 Note that we are not lines in the space oE. and vy, this space is divided into
talking about the configurations which are related to eachmany ordering zones. We are only interested in the ground
other by spatial symmetries, i.e., rotation, reflection, etc., fostate, which means that many of these ordering lines are not
our purpose such configurations are identical. relevant. Some of them only govern the ordering of the ex-

Type 2: (m,a,b)=(m’,a’,b’) but C#C’. In this case cited states. By removing the irrelevant lines, one gets a dia-
one particular sequence has the same, andb values in  gram which shows the ground state ce&fsg. 6). As men-
two or more configurations. This degeneracy persists for anjioned before, changing the intermonomer interaction
value of y andE, but may disappear for another sequence parameters inside any of these cells does not change the
Although this degeneracy depends on sequence coding, thgound state. In some recent woffl0] this picture is intro-
b=Db’ condition is purely geometrical, and is a necessaryduced to show the stability of native states against change in
condition for this degeneracy. the interaction parametef&1]. They only looked at one of

m—b<as —<b.

9

N[ 3

Type 3:E=E’, but (m,a,b)#(m’,a’,b"). One sequence
has the same energy in two different states g,b) and
(m’,a’,b"), provided thaty and E. obey the following re-
lation:

these cells in the neighborhood of some selected interaction
values. But by looking at the whole energy space, one can
find all possible ground states and their corresponding cells.
Any such cell in the space of energy parameters is associated
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FIG. 7. The histogram of the number of ground state candidates )
for 20-mers. The light and dark gray areas show the results for all FIG. 8. The average of the number of ground state candidates
sequences and good sequences, respectively. There are some “gdg# all sequences and good sequences vs length of sequences.

sequences” with only one ground state candidate. .
G.=1. This means that for any set of energy parameter val-

. . . es, they have the same unique ground state. Figure 9 shows
with one ground state candidate. Th_e number of cells is equéjome of these sequences and their unique native structures.
to the num_ber of ground state cand@e{t@g(a)]. By draw- — |ngeed the native states of these sequences have perfect sta-
Ing SUCh, diagrams, one can easily find th'e ground state fo15i|ity with respect to a change of the energy parameters. Our
any choice ofE. and y. Figure 6 shows this diagram for & o meration shows that theabsolute native structuresre
20-mer. In this example therg are only seven possible grou be found among the most compact structures. As Fig. 10
states. The cells marked with the numbers *1” and "2” g4\s although the ratio of the number mgrfectly stable

correspond to type-1 and type-2 degenerate states, reSpegsqenceso the number of all possible proteins decreases
tively, therefore there is no unique native structure for thesg, ., increasingL, their actual number increases. This sug-

cells. The sequence in this example has three nondegeneraigqis that for the proteins with typical lengths near that of

states. These structures are shown in the fl_gure. Itis possibje.; ral proteins, perfectly stable sequences constitute a small
that all the ground state candidates of a given sequence agg nonzero fraction of all possible sequences. A relevant

degenerate. These sequences constitute universally bad $f7agtion is whether the existence of these perfectly stable
guences, i.e., for any set of interaction parameter values th equences is due to the simplifications in our model. Actu-

do not have a native structure. Any sequence which is not g”y we cannot give an exact answer to this question, but
bad sequence we callgood sequenceNearly 54% of the g0y sequences may exist in models with more monomer
sequences of length 20 are good sequences, i.e., for so

specific set of energy parameters they have a native state. Thé existence of these sequences may answer some ques-

The interesting point in Fig. 6 is that the number of yjong anout protein folding. Their number is small compared
ground state candidates is very small. The largest values Qfiih the huge number of the possible amino-acid sequences,

G, for sequences with length 6,8,10,12,14,16,18,20 argqir native states are highly compact and are stable against
1,1,1,3,4,5,6,7 respectively. Figure 7 shows the histogram ghe changes in the intermonomer interactiéines., the prop-
Gc(o) for all sequences witlh =20. The light gray area in  gpjes of the solution

this figure shows the result for all?2 sequences, and the

dark area shows the results for good ones. From this diagrar

it can be seen that the mean value@f( o) is very small.

The average o6.( o) for various lengths is shown in Fig. 8.

However, the data in hand are not enough to draw a reliable

conclusion about the number of ground state candidates fo

sequences of large length, but the average number does ni *—o—@

seem to grow very rapidly, and the growth rate appears to be (14,6,10) (19.9.12)
linear. Extrapolating the growth rate to sequences of length
200, 30 ground state candidates are predicted on averag:

Comparison of the average value @&f, (o) for these se-
quences with the number of all configuratiofi€., for se-
guences with length 20 the number of sequences is on th
order of 1¢) shows that the geometric constraints play an
important role in selecting a state as the ground state. The

reason that there are few ground state candidates for an

seqguence can be given by a geometrical argurteiit This (126.7) (1359
argument shows that the upper estimate for maxin@yms FIG. 9. Four examples of perfectly stable sequences and their
L2. absolute native structures. For any positive valug @hdE, these

As Fig. 8 shows, there are some good sequences witkequences are folded uniquely in the structures shown.
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FIG. 11. The histogram of number of structures with a given
FIG. 10. The ratio of the numbers of perfectly stable sequencedesignability.
to all sequences decreases with length of sequences, but their abso-
lute numbers increasgnner graph.

V. SPACE OF ENERGY PARAMETERS, E. AND vy

IV. NATIVE STRUCTURES One of the important aspects of the work done in this
In Sec. Il we introduced the reduced set of contact mapspaper is that we can fmd. the.exact results for any range of
energy parameters. The time it takes for this program to find

As w. hown, the number of m longin hi ;
s was shown, the number of maps belonging o this s(atfhe ground state candidates for all sequences by exact enu-

Ny, is much smaller than the number of structurigay . eration is on the same order as that of the usual enumera-
But the number of those structures which can be the nativ .
ion schemes for only one particular set of energy param-

state is still much smaller. The number of possible native .
P eters. Because the average number of ground state candidates

structuresNaive, 1S Shown in Fig. 1. In this figure all those . 2 .
structures which have been the native state of some sequerfevery small, the determination of the native ground states

for at least one set of energy parameter values have begll, S 1908 5 TS TEN BUEE S B e TR O
counted. Fitting the data on an equation similar to Hog, q 9 ' P

gIVES Yraive= 1.87 andz, = 1.68. In Fig. 2, we have com- energy parameters within a X2.2 square in arbitrary units,

pared the number of native structures as a function of theiﬁ;th a grid size of 0.1(14400 pointk The number of pro-

compactness with the total number of physical maps an mhkg sequenpe$§equences which have unique 'grounq
State$is shown in Fig. 13. As one can see, there are jumps in

with the number of maps in the reduced setlfer 18. It can e number of proteinlike sedquences. These UMDS SDeC
be seen that there are no native structures with fewer thaﬁi p q : jumps specify

eight contacts. Also the average compactness of native stat e borders of regions of relative staplhty within the space of
€énergy parameters. A closer examination shows that these

is compared in Fig. 3. . . . . ;
We F():an also Iogok at the designability of structures. Th borderlines contain sharp dips adlac?“? to the jumps. The
designability shows how many times a structure is selecteehirge changes in the number of proteinlike sequences show
at when we cross these borders the ground states of many

as the native state for a fixed set of interaction paranj&ler sequences change. and the degenerate around states are re-
We observed that the distribution of designability is energy d ge, 9 9

dependent, but the most highly designable structures for th@Iaced by nondegenerate ong vice versa However,
different values of energy parameters are almost the same.
We can introduce a global designability paraméefior the
native structures. It is a bit different from the above design-
ability definition. In our case we correspond to any structure
a set of sequences. Any of these sequences select this stru
ture as the unique ground state, at least in a small region o
energy parameter space. The global designability of anys
structure is the number of the members of its correspondincé
set, i.e., we count how many times a structure becomes thc

candidate for a nondegenerate ground state.
Figure 11 shows the histogram of designability for struc- =
tures with length 20. As one can see, the results are ven
similar to those for a fixed set of energy parameters in the I I

1000

100

Average

space of compact structurgs,7]. The average designability

as a function of compactness for=20 is shown in Fig. 12.

As the diagram shows, the peak average designability occur |
for the most compact structures and it falls sharply with de-
creasing compactness. Thus if one is only interested in
highly designable structures, it is reasonable to search the FIG. 12. The average designability for structures with a given
space of compact structures. number of contacts, fot =20.

Number of contacts
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FIG. 14. The points in the energy parameter sp@bitrary
units), where type-3 degeneracies occur, for sequences of length 20.
The grid size is 0.1.

ground stat¢Eq. (7)]. Type-1 degeneracies do not occur for
highly compact sequencdsee Fig. 2 Thus this type of
degeneracy is more relevant in the reglbg< y. We have

not shown the corresponding information for type-2 degen-
eracies as they contain no new information; similar border
jumps can be observed in the number of sequences with this
type of degeneracy too. The maximum percentage of se-
quences with nondegenerate, type-1 degenerate, and type-2
degenerate ground states in the chosen region are 40.0%,
5.06%, and 64.9%, respectively.

In addition to obtaining information about the sequences,
this procedure also finds the ground states. Since the energy
parameters determine which states are the ground states, the
number of structures which can be the native state of some
particular sequence also depends on the energy parameters.

FIG. 13. The number of proteinlike sequences of length 20, forFigure 16 shows the number of native states as a function of
given values of energy parameters in a2 square regiofarbi-  the energy parameters. The importance of compactness for
trary unitg; (a) three-dimensional plotp) contour plot. large values oE. can also be seen in this diagram. Note that
the smallest value for the number of native states is 503. This

nothing can be said about the details of these changes. Ofgimber corresponds to the number of most compact struc-
can get some idea about what is happening on these border-

lines by comparing the contour plot for Fig. (8B [Fig. :

13(b)] with the ordering lines diagram for one particular se-
quence(Fig. 6). As mentioned in Sec. lll, the ordering lines
specify level crossings and type-3 degeneracies only occu

on the ordering line itself. These ordering lines constitute theNumbmf
underlying cause of the sharp dips observed in the bordersseuencs
This is more evident in Fig. 14. In this figure we have shown %% |
those points in the energy parameter space where at least or ‘
type-3 degeneracy occurs. This diagram is in fact a superpo
sition of diagrams like Fig. 6, for all sequences, and any line oL
in it corresponds to many ordering lines between ground
state candidate cells.

We can find similar information for other types of degen-
eracies. For example, the number of sequences which hav
type-1 degenerate ground states is shown in Fig. 15. As one
can see in this diagram, the number of such sequences van- FiG. 15. The number of sequences of length 20, with type-1
ishes for largeE, and smally. For largeE, the number of  degenerate ground states, for given values of energy parameters in a
contactsb plays an essential role in the selection of the12x12 square regiofiarbitrary units.

(b)

~ 8

20000 |
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set by removing all irrelevant maps. We have found the re-
duced set of contact maps for sequences of lengths up to 20
in this paper by exact enumeration. This reduced set of con-
tact maps shows a scale-independent behavior as shown in
Fig. 4.

Using the reduced set of contact maps, the ground state
candidates for all sequences were found in the HP model.
The number of these ground state candidates is quite small.
However, we limited ourselves to the HP model in this work,
but some argumenfd.1,19 show that the number of ground
state candidates is restricted in models with more monomer
types. The ground state candidates divide the space of energy
parameters into several cells. By finding this cell structure
for all sequences, we have found the native states for all
0 sequences of different lengths, for a wide range of energy
arameters. Jumps are observed in the number of proteinlike
equences. These jumps are related to boundaries of the
aforementioned cells.

Another interesting result is that we find some sequences

tures of length 20. Again, large jumps in the number of na-W'th absolute native states, i.e., their native states are not

tive states are observed. One can also find the average des%_nsitive to the values of energy parameters. Our results
ignability of the structures by dividing the data of Figs. 1BS ow that the number of such perfectly stable sequences

and 16(the ratio of the number of sequences to a corres ond2 WS with length, however, their percentage decreases.
. . q P Because the key tool used in this paper has been the struc-
ing number of native structures

tural information contained in the contact maps, the qualita-
tive results can be generalized to all contact models, regard-
less of the details of the lattice, the contact rules, and the
Due to the short-range nature of intermonomer interacUMper of monomer types.

tions, the configuration energy of protein sequences can be
determined by using configuration contact matrices. In this
paper, it has been shown that for this class of problems, We would like to thank S.E. Faez, R. Gerami, R. Golesta-
where one is interested in native states of proteins, the spaegan, A.Yu. Grosberg, N. Heydari, M. Khorami, S. Rouhani,
of physical contact maps can be reduced to a much smallend H. Seyed-Allaei for helpful comments.

Number of
Structures

15000 |

10000

FIG. 16. The number of native states for sequences of length 2(2
for given values of energy parameters in ax1I2 square region
(arbitrary units.

VI. CONCLUSION
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